9,260 research outputs found

    Temperature dependence of surface stress across an order-disorder transition: p(1x2)O/W(110)

    Full text link
    Strain relaxations of a p(1x2) ordered oxygen layer on W(110) are measured as a function of temperature across the disordering transition using low-energy electron diffraction. The measured strains approach values of 0.027 in the [1-10] and -0.053 in the [001] direction. On the basis of the measured strain relaxations, we give quantitative information on temperature-dependent surface stress using the results of ab initio calculations. From the surface formation energy for different strains, determined by first-principles calculations, we estimate that surface stress changes from -1.1 for the ordered phase to -0.2N/m for the disordered one along [1-10], and from 5.1 to 3.4 N/m along [001]. Moreover, our observation that the strains scale inversely with domain size confirms that the strain relaxation takes place at the domain boundaries.Comment: 8 pages, 5 figure

    Load management of heat pumps using phase change heat storage

    Get PDF
    In the UK, heat pumps are often promoted as the means to provide low-carbon space heating and hot water for future dwellings as the electricity supply decarbonises. However, a major issue with growing heat pump use would be the additional load that this could place on the electrical network at times of peak heat and power demand. A means to alleviate potential demand problems is to stagger the operating times of heat pumps by integrating them with thermal buffering. However, focusing on the domestic sector, substantial volumes of thermal storage would be required to achieve the necessary level of operational flexibility in heat pumps and this poses a particular problem in the UK where the floor areas of urban dwellings are small. Thermal storage featuring phase change material (PCM) offers the potential of more volumetrically efficient heat buffering, which may be more suitable for integration into domestic heating systems. In this paper, the potential to shift the operating time of heat pumps integrated with phasechange- material-enhanced thermal storage is assessed and compared to conventional hot water storage, where the limits of flexible operation are determined by the comfort and hot water needs of the end-user. The results indicate that the use of PCM-enhanced thermal storage can reduce the volume of the buffering required for load shifting by up to 3 times. However, thermal buffering with load shifting can increase heat pump energy demand and (at present) in the UK results in increased emissions and cost penalties for the end user

    Confronting mitigation deterrence in low-carbon scenarios

    Get PDF
    Carbon dioxide removal (CDR) features heavily in low-carbon scenarios, where it often substitutes for emission reductions in both the near-term and long-term, enabling temperature targets to be met at lower cost. There are major concerns around the scale of CDR deployment in many low-carbon scenarios, and the risk that anticipated future CDR could dilute incentives to reduce emissions now, a phenomenon known as mitigation deterrence. Here we conduct an in-depth analysis into the relationship between emissions reduction and emissions removal in a global integrated assessment model. We explore the impact of CDR on low-carbon scenarios, illustrating how the pathway for the 2020s is highly sensitive to assumptions around CDR availability. Using stochastic optimisation, we demonstrate that accounting for uncertainty in future CDR deployment provides a strong rationale to increase rates of mitigation in the 2020s. A 20% chance of CDR deployment failure requires additional emissions reduction in 2030 of 3–17 GtCO2. Finally, we introduce new scenarios which demonstrate the risks of mitigation deterrence and the benefits of formally separating CDR and emissions reduction as climate strategies. Continual mitigation deterrence across the time-horizon leads to the temperature goals being breached by 0.2–0.3 °C. If CDR is treated as additional to emissions reduction, up to an additional 700–800 GtCO2 can be removed from the atmosphere by 2100, reducing end-of-century warming by up to 0.5 °C. This could put sub-1.5 °C targets within reach but requires that CDR is additional to, rather than replaces, emission reductions

    Dual equilibrium in a finite aspect ratio tokamak

    Full text link
    A new approach to high pressure magnetically-confined plasmas is necessary to design efficient fusion devices. This paper presents an equilibrium combining two solutions of the Grad-Shafranov equation, which describes the magnetohydrodynamic equilibrium in toroidal geometry. The outer equilibrium is paramagnetic and confines the inner equilibrium, whose strong diamagnetism permits to balance large pressure gradients. The existence of both equilibria in the same volume yields a dual equilibrium structure. Their combination also improves free-boundary mode stability

    Poisson transition rates from time-domain measurements with finite bandwidth

    Full text link
    In time-domain measurements of a Poisson two-level system, the observed transition rates are always smaller than those of the actual system, a general consequence of finite measurement bandwidth in an experiment. This underestimation of the rates is significant even when the measurement and detection apparatus is ten times faster than the process under study. We derive here a quantitative form for this correction using a straightforward state-transition model that includes the detection apparatus, and provide a method for determining a system's actual transition rates from bandwidth-limited measurements. We support our results with computer simulations and experimental data from time-domain measurements of quasiparticle tunneling in a single-Cooper-pair transistor.Comment: 4 pages, 5 figure

    A simple assessment of housing retrofit policies for the UK: what should succeed the energy company obligation?

    Get PDF
    Despite the need for large-scale retrofit of UK housing to meet emissions reduction targets, progress to date has been slow and domestic energy efficiency policies have struggled to accelerate housing retrofit processes. There is a need for housing retrofit policies that overcome key barriers within the retrofit sector while maintaining economic viability for customers, funding organizations, and effectively addressing UK emission reductions and fuel poverty targets. In this study, we use a simple assessment framework to assess three policies (the Variable Council Tax, the Variable Stamp Duty Land Tax, and Green Mortgage) proposed to replace the UK’s current major domestic retrofit programme known as the Energy Company Obligation (ECO). We show that the Variable Council Tax and Green Mortgage proposals have the greatest potential for overcoming the main barriers to retrofit policies while maintaining economic viability and contributing to high-level UK targets. We also show that, while none of the assessed schemes are capable of overcoming all retrofit barriers on their own, a mix of all three policies could address most barriers and provide key benefits such as wide coverage of property markets, operation on existing financial infrastructures, and application of a “carrot-and-stick” approach to incentivize retrofit. Lastly, we indicate that the specific support and protection of fuel-poor households cannot be achieved by a mix of these policies and a complementary scheme focused on fuel-poor households is required

    Motif Statistics and Spike Correlations in Neuronal Networks

    Get PDF
    Motifs are patterns of subgraphs of complex networks. We studied the impact of such patterns of connectivity on the level of correlated, or synchronized, spiking activity among pairs of cells in a recurrent network model of integrate and fire neurons. For a range of network architectures, we find that the pairwise correlation coefficients, averaged across the network, can be closely approximated using only three statistics of network connectivity. These are the overall network connection probability and the frequencies of two second-order motifs: diverging motifs, in which one cell provides input to two others, and chain motifs, in which two cells are connected via a third intermediary cell. Specifically, the prevalence of diverging and chain motifs tends to increase correlation. Our method is based on linear response theory, which enables us to express spiking statistics using linear algebra, and a resumming technique, which extrapolates from second order motifs to predict the overall effect of coupling on network correlation. Our motif-based results seek to isolate the effect of network architecture perturbatively from a known network state
    corecore